Adiabatic and Non-adiabatic Concerted ProtonElectron Transfers. Temperature Effects in the Oxidation of Intramolecularly Hydrogen-Bonded Phenols [J. Am. Chem. Soc. 2007, 129, 9953-9963]. Cyrille Costentin, Marc Robert, and Jean-Michel Savéant*

Page 9960. The standard free energy, enthalpy, and entropy of the reaction have been introduced in an unusual and confusing manner through

$$
\Delta G^{0}=F\left(E_{\mathrm{A} \cdot+/ \mathrm{A}}^{0}-E_{2 \cdot+/ 2}^{0}\right)=\Delta H^{0}-T \Delta S^{0}
$$

With the standard definitions,

$$
\Delta G^{0}=-F\left(E_{\mathrm{A} \cdot+/ \mathrm{A}}^{0}-E_{2 \cdot+/ 2}^{0}\right)=\Delta H^{0}-T \Delta S^{0}
$$

The values found for ΔH^{0} and ΔS^{0} are consequently opposite to those originally reported:

$$
\Delta H^{0}=0.103 \pm 0.059 \mathrm{eV}
$$

$$
\Delta S^{0}=0.418 \pm 0.21 \mathrm{meV} / \mathrm{K}
$$

and eq 25 becomes

$$
\begin{align*}
\ln \left(\frac{k}{\sqrt{T}}\right)=\ln \left(N_{\mathrm{A}} \chi d^{2} \sqrt{\frac{8 \pi R}{M}}\right)+ & \frac{\Delta S^{0}}{2 R}- \\
& \frac{\lambda / 4+\Delta H^{0} / 2+\Delta \mathrm{ZPE}}{R T} \tag{25}
\end{align*}
$$

With this double correction, the ensuing values of λ and χ remain unchanged.

Acknowledgment. We thank Prof. Leif Hammarström (Uppsala University, Sweden) for drawing our attention to this point.

JA100377G

10.1021/ja100377g

Published on Web 02/09/2010

Polyvalent Oligonucleotide Gold Nanoparticle Conjugates as Delivery Vehicles for Platinum(IV) Warheads [J. Am. Chem. Soc. 2009, 131, 1465214653]. Shanta Dhar, Weston L. Daniel, David A. Giljohann, Chad A. Mirkin,* and Stephen J. Lippard*

Page 14653. The legend for Figure 2 should read as follows:
Figure 2. Cytotoxicity profiles of Pt-DNA-Au NP (red circles), cisplatin (black squares), and $\mathbf{1}$ (green triangles) in A549 cells and Pt-DNA-Au NP (black squares), cisplatin (red circles), and $\mathbf{1}$ (green triangles) with U2OS, HeLa, and PC3 cells.

JA100560G

10.1021/ja100560g

Published on Web 02/09/2010

Noncovalent Cell Surface Engineering with Cationic

 Graft Copolymers [J. Am. Chem. Soc. 2009, 131, 18228-18229]. John T. Wilson, Venkata R. Krishnamurthy, Wanxing Cui, Zheng Qu, and Elliot L. Chaikof*A paper by Geert-Jans Boons and co-workers, ${ }^{1}$ which describes the synthesis and characterization of the cyclooctyne employed in this work, should have been cited in the main body of the text.

Literature Cited

(1) Ning, X.; Guo, J.; Wolfert, M. A.; Boons, G.-J. Angew. Chem., Int. Ed. 2008, 47, 2253-2255.

JA9109264
10.1021/ja9109264

Published on Web 02/03/2010

